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1. Introduction

There has been increasing recent attention on global fits of various indirect data to minimal

supergravity (mSUGRA), also sometimes called the constrained minimal supersymmetric

standard model (CMSSM) [1 – 5]. mSUGRA makes phenomenological analysis of the min-

imal supersymmetric standard model (MSSM) tractable via the low number of free param-

eters. In fact, the scalar masses m0, gaugino masses M1/2 and trilinear coupling A0 are

assumed to be universal at a gauge unification scale MGUT ∼ 2×1016 GeV. If the MSSM is

present in nature and if the mSUGRA universality assumptions are approximately correct,

chi-squared or probability distributions for potential collider/dark matter observables can

be derived. Early fits [6, 1 – 4] necessarily had fixed input parameters to reduce the dimen-

sionality of the input parameter space, making scans practicable. It is usually assumed

that neutralinos constitute the current cold dark matter content of the universe, since they

are weakly interacting, electrically and colour neutral and stable. The predicted value of

dark matter relic density ΩDMh2 is a very strong constraint on viable mSUGRA parameter

space, effectively reducing its dimensionality by 1.

The accuracy of the inferred value of ΩDMh2 from WMAP data makes a global fit to

all of the relevant mSUGRA parameters potentially difficult because the system is rather

under-constrained, possessing narrow, steep valleys of degenerate χ2 minima. If the MSSM

is confirmed in colliders, it will hopefully be possible to break such degeneracies with collider

observables. This does not help us at present, where we want to provide a sort of ‘weather
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forecast’ for future colliders. It was indicated in ref. [3] that the powerful Markov Chain

Monte Carlo (MCMC) technique might allow us to find the probability distribution of a

fully global fit to indirect data. Two of us went on [7] to demonstrate that MCMCs do

indeed allow such a fit, investigating collider observables. One of us examined the effect of a

naturalness prior [8]. Our results were confirmed and expanded in ref. [9], also utilising the

MCMC method and including a one-loop MSSM calculation of the W-boson mass MW and

the weak leptonic mixing angle sin2 θl
w in the likelihood density. The purpose of MCMC

mSUGRA global fits is two-fold: as well as producing interesting and useful physics results

in themselves, we may profit from the experience of utilising and developing the MCMC

tools, which could prove very useful when analysing future collider data.

It is our purpose in the present paper to extend the previous µ > 0 global fits to

µ < 0. Besides the observables studied in [7] we now also include MW and sin θl
w in our

analysis, as done in e.g. [4, 9]. Being highly sensitive to new physics these very accurately

measured quantities play a key role in the electroweak sector and are therefore also of

great interest when it comes to further constraining the mSUGRA parameter space. It

was shown in the literature that the one-loop predictions for the two observables alone

do not bear enough accuracy to make reliable predictions. In fact, the pure one-loop

predictions can lead to results contradictory to the state-of-the-art predictions [10] used in

our analysis. These contain the known higher order contributions from both the Standard

Model and the MSSM. Extending our analysis to negative values of µ it is crucial to

further use a very accurate prediction for (g−2)µ. The dominant two-loop corrections [11]

to this quantity are therefore also taken into account in the present analysis. It is well

known that the measured anomalous value of the magnetic moment of the muon (g−2)µ is

roughly 2σ above the Standard Model (SM) predicted value. This positive contribution is

predicted by some regions of mSUGRA parameter space, provided µ > 0. The “dark side”

of mSUGRA (i.e. µ < 0) provides a negative contribution, thereby being disfavoured by the

(g − 2)µ measurement. In a global fit, one can trade likelihood penalties between different

observables and the conclusion that µ < 0 is disfavoured to roughly 2σ is not at all obvious.

We will calculate the extent to which the dark side is ruled out by using MCMCs with

“bridge sampling” [12]. We will encounter problems associated with isolated likelihood

density maxima in the dark side, potentially ruining MCMC convergence. Fortunately,

bridge sampling provides a solution to the convergence issue and we are able to calculate

the degree to which the dark side is disfavoured with respect to µ > 0. As well as extending

previous analyses to µ < 0, we have made several technical improvements in the calculation

of the likelihood compared with previous attempts in the literature.

If the lightest supersymmetric particle decays into Standard Model particles, as is the

case in R-parity violation for instance, its relic density will be essentially zero today. In

that case, one requires to obtain the WMAP fitted ΩDMh2 from some other source than

neutralinos (gravitinos or hidden sector matter for instance). In order to investigate this

case, we will also perform the fits for the case where all relevant data except ΩDMh2 are

included in the likelihood density. Such fits will help us to understand the impact of ΩDMh2

in constraining the model, as well as being relevant for the R-parity violating mSUGRA [13]

in the limit of small R-parity violating couplings.
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We now go on to detail the various constraints used on the model in section 2. The

results of the dark side fitting procedure are compared and contrasted against the better

known µ > 0 ones in section 3, before the effect of dropping the dark-matter constraint

is examined in section 4. Closing remarks are presented in section 5. A presentation of

the fitting procedures is confined to the appendix: Markov Chain Monte Carlos and bridge

sampling are discussed in appendix A. Convergence problems and their resolution are

discussed in appendix B.

2. Constraints

We vary 8 input parameters relevant
mSUGRA parameter range

A0 -4 TeV to 4TeV

m0 60 GeV to 4 TeV

M1/2 60 GeV to 2 TeV

tan β 2 to 62

SM parameter constraint

1/αMS 127.918±0.018

αMS
s (MZ) 0.1176±0.002

mb(mb)
MS 4.24±0.11 GeV

mt 171.4±2.1

Table 1: Input parameters

to the model. The range of intrinsically

mSUGRA parameters considered is shown

in table 1, where tan β is the ratio of the

two MSSM Higgs doublet vacuum expecta-

tion values. We use ref. [14] for the QED

coupling constant αMS , the strong coupling

constant αMS
s (MZ) and the running mass of

the bottom quark mb(mb)
MS , all in the MS

renormalisation scheme. The recent Teva-

tron top mass mt measurement [15] is also

employed. These SM inputs are shown in

table 1. Experimental errors are so small on

the mass of the Z0 boson MZ and the muon decay constant Gµ that we fix them to their

central values of 91.1876 GeV and 1.16637×10−5 GeV−2 respectively. The Standard Model

(SM) input parameters are allowed to vary within 4σ of their central values but a χ2 penalty

χ2
i =

(ci − pi(m))2

σ2
i

(2.1)

is applied for observable i. ci denotes the central value of the experimental measurement,

pi(m) represents the value “predicted” at any stage of the MCMC sampling given knowl-

edge of the model m presumed to be “true” at that point. Finally σi is the standard error

of the measurement. Equivalently, expressing this in the language of likelihoods, we are

assuming that each of these measurements have Gaussian errors,1 and that the likelihood

distribution Li ≡ p(ci|m) for any one measurement may be written in the following way:

Li ≡ p(ci|m) =
1

√

2πσ2
i

exp
[

−χ2
i /2

]

. (2.2)

1The experimental constraints on BR(Bs → µ+µ−) and the LEP constraints on the Higgs mass, each

described later, are not Gaussian constraints and must therefore be treated differently. Nothing prevents

us from continuing to parametrise their likelihood distributions in the same way, however, but it should be

realised that a consequence of this is that the “χ-squared penalty” (i.e. −2 logLi) will not be parabolic, as

Li is not a Gaussian distribution in these cases.
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The normalisation constant
√

2πσ2
i may be ignored in subsequent calculations as the ab-

solute value of Li will never be needed. It will only be necessary to know the ratios of

values of Li at neighbouring points in the MCMC chain, or between chains in which the

neglected constants are identical.

In order to calculate predictions for observables from the inputs in table 1, we use

SOFTSUSY2.0.7 [16] to first calculate the MSSM spectrum.

We apply the bounds in ta-
mχ0

1
37 mχ±

1
67.7 mg̃ 195 mτ̃1 76

ml̃R
88 mt̃1

86.4 mb̃1
91 mq̃R

250

mν̃e,µ 43.1

Table 2: Lower bounds applied to sparticle mass predic-

tions (in GeV).

ble 2 in order to take into ac-

count 95% limits coming from neg-

ative sparticle searches [14]. Any

point transgressing these bounds

is given a zero likelihood density

(or, equivalently, an infinite χ2).

Also, we set a zero likelihood for any inconsistent point, e.g. one which does not break elec-

troweak symmetry correctly, or a point that contains tachyonic sparticles. For points that

are not ruled out, we then link the MSSM spectrum via the SUSY Les Houches Accord [17]

to micrOMEGAs1.3.6 [18], which then calculates ΩDMh2, the branching ratios BR(b → sγ)

and BR(Bs → µ+µ−) and (g − 2)µ.

The measured value of the anoma-
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Figure 1: χ2 penalty on BR(Bs → µ+µ−) from [21]

lous magnetic moment (g−2)µ is in con-

flict with the SM predicted value by [14]

δaµ ≡ δ
(g − 2)µ

2
= (22 ± 10) × 10−10.

(2.3)

This excess may be explained by a su-

persymmetric contribution, the sign of

which is identical to the sign of the

superpotential µ parameter [19]. Af-

ter obtaining the one-loop MSSM value

of (g − 2)µ from micrOMEGAs, we add

the following dominant 2-loop correc-

tions [11, 20]: the logarithmic piece of

the 2-loop QED contribution, two-loop

stop-higgs and chargino-stop/sbottom

contributions.

The Tevatron has recently been in-

strumental in bounding the branching ratio of the rare decay channel Bs → µ+µ− [22].

Such bounds help constrain the mSUGRA parameter space [23]. We apply a χ2 penalty

on the value predicted by micrOMEGAs1.3.6 derived from CDF Tevatron Run II data [21].

The resulting penalty is shown in figure 1.

Recently, it has been claimed that light sparticles are preferred by the two weak ob-

servables sin2 θl
w and MW [4, 24]. In ref. [9], MW and sin2 θl

w were used at one loop order

to help constrain mSUGRA in a global MCMC fit. The preference for such light SUSY

– 4 –
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Figure 2: Various approximations to MW

in mSUGRA
Figure 3: Various approximations to sin2 θw

in mSUGRA.

was not particularly evident in the global fits. We examine the mSUGRA predictions

for MW and sin2 θl
w(eff) in figures 2 and 3 for A0 = 0, tan β = 10, µ > 0, equal m0

and M1/2 and central experimental values for the other inputs. For the “SOFTSUSY”

lines, the default SOFTSUSY calculation is used. This contains the full SOFTSUSY MSSM

contributions to the leptonic mixing angle sin2 θl
w and MW . It also contains the dominant

2-loop Standard Model contributions to MW . For the lines marked “2-loop”, the SUSY Les

Houches Accord is used to communicate with a currently private code that calculates the

W-boson mass MW [10], and the effective leptonic mixing angle variable sin2 θl
w, calculated

to two loops in the dominant MSSM parameters. We use the most general MSSM result

for the full one-loop contributions. Besides all known corrections due to SUSY particles,

the full SM contributions are also included in the predictions for MW and sin2 θl
w, leading

to the currently most accurate predictions within the MSSM. The “SM” lines show the

SM limit, where all corrections involving sparticles are dropped, i.e. the state-of-the-art

SM results [25, 26] with MHSM = Mh. They vary slightly with m0 = M1/2 because the

varying mSUGRA parameters produce different values of the Higgs boson mass mh. The

horizontal lines on the figures show the current 1σ experimental limits [27, 28]

MW = 80.392 ± 0.031 GeV, sin2 θl
w = 0.23153 ± 0.00020, (2.4)

where we have added experimental and theoretical errors in quadrature.

The theoretical errors in the predicted MW and sin2 θl
w are estimated to be 10 MeV

and 12×10−5 respectively [1]. We use these uncertainties for the purposes of comparison,

although they have been slightly reduced recently by the addition of additional two-loop

corrections taken into account in the present analysis [10, 29]. We see from the SOFTSUSY

line in the figure that the prediction of MW does not have a strong preference for light

– 5 –
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SUSY, since the model is within the 1σ errors up until m0 = M1/2 = 4TeV. In actual

fact, only very light SUSY masses are disfavoured by the “SOFTSUSY” line, leading to

predictions above the 1σ-range. The situation is similar for the sin2 θl
w “SOFTSUSY” line,

where again only very light SUSY masses lead to predictions outside the 1σ-range. However,

using the best available predictions, corresponding to the “2-loop” lines, a preference for

light m0 = M1/2 can be seen in the prediction for MW . The SM curve which lies just below

the 1σ-interval is approached from above in the decoupling limit, furthermore indicating

a slight preference of the MSSM over the SM. The preference for light SUSY is not as

striking for sin2 θl
w. Here most of the m0 = M1/2 values are doing equally well, which

is mainly due to the fact that the SM prediction for sin2 θl
w is already well within the

1σ-range. With the behaviour of the “one-loop” curve and the best available result being

qualitatively different, it is desirable to use the more accurate result for MW and sin2 θl
w

when calculating the χ2 contributions of MW and sin2 θl
w using eq. 2.1. Although ref. [9]

only used the one-loop predictions, the theoretical errors were correspondingly enlarged in

order to take the larger uncertainty from higher order terms into account.

LEP2 constraints on the lightest CP-

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 110  112  114  116  118  120  122  124

∆χ
2

mh0 (GeV)

Figure 4: LEP2 higgs χ2 penalty paid

even higgs mass are included as a further

likelihood penalty following a parameterisa-

tion of LEP2 data in the SM limit [30]. For

the LEP2 constraints, the SM limit is a good

approximation for mSUGRA, since sparti-

cle mass limits imply that we must be near

the decoupling régime of the MSSM [31].

We estimate that the SOFTSUSY2.0.7 de-

termination of mh has a 2GeV theoreti-

cal error in mSUGRA, although it may be

somewhat larger in the general MSSM [32].

We therefore smear the parameterised LEP2

Higgs likelihood density LLEP2(mh) with

a Gaussian distribution of width σh =

2 GeV:

Lh(mh) =

∫ mh+4σh

mh−4σh

dx
1√

2πσh

e
−(mh−x)2

2σ2
h LLEP2(x). (2.5)

The result of this procedure leads to the effective ∆χ2 = −2 lnLh penalty shown in

figure 4. The slight excess of candidate Higgs events over the background predic-

tion at LEP2 can be seen by a negative ∆χ2 penalty in the figure for mh ∼ 116 −
121 GeV.

The rare bottom quark branching ratio is BR(b → sγ) is constrained to be [33]

BR(b → sγ) = (3.55 ± 0.38) × 10−4, (2.6)

obtained by adding the experimental error with the estimated theory error [34] of 0.3×10−4

in quadrature. Very recent estimates [35, 36] of BR(b → sγ) are compatible with eq. 2.6 at

– 6 –
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the 1σ level, although the error has decreased. Our prediction of BR(b → sγ) is substituted

for pi in eq. 2.1 in order to calculate χ2
BR(b→sγ).

We use the WMAP3 [37] power law Λ-CDM fitted value of

Ω ≡ ΩDMh2 = 0.104+0.0073
−0.0128 (2.7)

for the dark matter relic density of the universe. We initially assume that the neutralinos

are stable and that they constitute the whole of the dark matter relic density. Eq. 2.1 is

used to calculate χ2
Ω, with σΩ = 0.0073 for a prediction lower than the central experimental

value and 0.0128 otherwise.

Having described the calculation of the likelihood associated with each individual mea-

surement, we are now in a position to define the likelihood of the set of all measurements

or observables, taken together. We are required to calculate the joint (total) likelihood L
of all the measurements given the truth, i.e. in the notation of Eq 2.1 we want to know:

L = p(measurements|true model) (2.8)

= p(c1, c2, . . . |m) (2.9)

= p(c1|m) · p(c2|c1,m) · p(c3|c1, c2,m) · . . . (2.10)

= L1 · p(c2|c1,m) · p(c3|c1, c2,m) · . . . (2.11)

which is not in general equal to

L1 · L2 · L3 · . . . (2.12)

unless we can be confident that for each measurement

p(c3|c1, c2,m) ≈ p(c3|m) etc. (2.13)

Fortunately we can be confident that Eq 2.13 does hold in our situation, as we have de-

liberately constructed m to be broad enough such that all fundamental parameters which

might reasonably be expected to correlate any two of the measurements are included within

it.2 We are therefore at liberty to write:

L = L1 · L2 · L3 · . . . (2.14)

= e−
P

i χ2
i /2 (2.15)

for the total likelihood, and we can be confident that this product takes into account the

expected correlations between all the observables contained, due to the nature of the space

{m} of models considered.

3. Dark side fits

We now compare and contrast the dark side fits to those with µ > 0. In figures 5(a)

and 5(b), we show the posterior probabilities P marginalised3 to the m0 − M1/2 plane

2If the design of m were not broad enough, then m would have to be extended. For example: were it

the case that the up quark mass mu was expected to significantly correlate two or more of the observables,

then for Eq 2.13 to continue to hold, mu would have to be added to m enlarging its dimension by one.
3For readers unfamiliar with the term: marginalisation means “integrated over the unseen dimensions

of parameter space” in this context.
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Figure 5: mSUGRA Fits for (a) µ < 0 (b) µ > 0 marginalised to the m0-M1/2 plane. The posterior

probability is indicated by the bar on the right hand side. The inner (outer) contours show the 68%

(95%) confidence region respectively.

for both signs of µ. As with all 2-dimensional marginalised plots in this paper, we bin

the plane into 75×75 2-dimensional bins. The colour bar on the right hand side of the

figures shows the posterior probability P of each bin divided by the maximum posterior

probability of any bin in the plot. In figure 5(a), the only 68% contour4 is at the lowest

values of m0: all other contours are 95% confidence region contours due to the lowish

likelihood densities. The brokenness of the contours is a result of statistical fluctuations in

the results. Although these are visible, there is clearly reliable information their trajectories

in the plot. The µ < 0 plot displays two isolated local maxima, whereas the 95% confidence

region of µ > 0 is continuously connected. We discuss the relative normalisation of the two

µ < 0 maxima in appendix B. In the 95% confidence region of figure 5a closest to the origin,

the relic density is dominantly depleted by either stop co-annihilation [38 – 40] t̃χ0
1 → tg

or stau co-annihilation [41] τ̃1χ
0
1 → τγ. On the other hand, the 95% region at higher

m0 −M1/2 consists of resonant Higgs annihilation regions [42 – 44], where χ0
1χ

0
1 → h,A0 →

bb̄/τ+τ− and the focus point region where the LSP has a significant higgsino component

and χ0
1χ

0
1 → ZZ,WW, tt̄ [45 – 47]. There was no significant stop co-annihilation [38 – 40]

region for µ > 0.

We now include some other marginalisations on the other 2-dimensional parameter

planes for µ < 0 mSUGRA with a flat prior. They are displayed in figures 6(a)-(d).

Figures 6(a) and 6(b) show that the probability density for the 2-chain co-annihilation

sample is not separated from the other sample in either the M1/2 −A0 plane or the tan β-

A0 plane (the almost disconnected region at the bottom of figure 6(a) consists of the light

4Note that the confidence regions in figures 5 (and those in later plots) should strictly be referred to as

“Bayesian credible intervals” (each region contains a fixed amount of the posterior probability) to distinguish

them from the related concept from Frequentist Statistics called a “confidence interval”. Usage of the term

“credible interval” is not common in High Energy Physics, however, and we will stick to “confidence region”.
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Figure 6: Constraints from global fits with µ < 0 mSUGRA marginalised to 2-dimensional pa-

rameter planes. We have assumed a flat prior. The posterior probability is indicated by the bar

on the right hand side. The inner (outer) contours show the boundary of a 68% (95%) confidence

region.

h0-pole region). There is only a modest separation in the M1/2-tan β plane: the 68%

contours do not connect the two regions, whereas the 95% contours do. Figure 6(d) shows

that the connection between the two samples in the m0 − tan β plane is marginal. The

m0 − A0 marginalisation was useful for investigating the physics behind the two isolated

probability maxima, and is displayed in appendix B.

The probability distributions of the masses of selected MSSM particles are shown in

figure 7 for both signs of µ in mSUGRA. The µ < 0 sample has not been normalised to

the correct relative normalisation compared to µ > 0 in the figure. The lightest CP-even

higgs, the gluino and the lightest neutralino all have mass distributions that are remarkably

similar for either sign of µ. However, in figure 7(c), we see that the µ < 0 sample has a

flat plateau for higher squark masses, whereas the µ > 0 sample tails off somewhat. High

squark masses will result in smaller total SUSY cross-sections at the LHC but the lighter

gluino should still provide enough events for discovery if mg̃ < 2TeV [48, 49]. Sharp peaks

at low gluino and neutralino masses are due to the h0-resonance annihilation region [7]. The

broader peak of the µ < 0 curve in figure 7(c) is due mostly to the co-annihilation sample.
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Figure 7: Probability distributions in mass of (a) the lightest CP even higgs, (b) gluino, (c) the

left-handed squark and (d) the neutralino. Flat priors have been assumed.

The significant probability densities for large gluino and squark masses are rather alarming,

as then SUSY detection at the LHC would require a longer running time. Gauginos are

not so sensitive to the range of the prior in table 1 but the sfermions are [9] and a reduced

range makes lighter sfermions more likely. Also, naturalness priors [8] have a large impact,

reducing the likely sparticle masses.

3.1 Further investigations of the fits

We examine the best-fit points from each sampling in table 3. We see from the table that,

as expected, the µ > 0 sample has a better best-fit point and a correspondingly lower χ2,

mainly due to the much better fit to δaµ. In agreement with refs. [4, 24], the best-fit µ > 0

point is at light SUSY masses. The m0 and M1/2 parameters are smaller for the µ > 0

case than for µ < 0, corresponding to lighter sparticles and the larger contribution to the

anomalous magnetic moment of the muon. If we take the µ < 0 best-fit point and flip

the sign of µ, we find that the point does not break electroweak symmetry properly and
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µ < 0 µ > 0 µ < 0 µ > 0

m0/GeV 3610 156 δaµ/10−10 -0.4 14.2

M1/2/GeV 93 569 BR(b → sγ)/10−4 3.65 3.41

A0/GeV -56 270 BR(Bs → µ+µ−)/10−9 3.1 3.7

tan β 6.0 24.1 sin2 θl
w(eff) 0.23153 0.23152

ΩDMh2 0.102 0.101 MW /GeV 80.382 80.368

mh/GeV 117.5 115.8 χ2 4.5 1.5

Table 3: Best-fit points from the MCMC samplings for each sign of µ. χ2 ≡ ∑

i χ2
i and the

Standard Model inputs are close to their experimental central values in each case.
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Figure 8: Posterior probability distributions for weak observables in mSUGRA.

is excluded. The µ > 0 best-fit point has a total χ2 of 181 when the sign of µ is flipped,

mostly due to an increase in the predicted value of ΩDMh2 to 0.195.

The region of smaller m0, M1/2 is more probable for µ > 0 than for µ < 0: this

will lead to a relatively heavier µ < 0 spectrum. Our µ > 0 results are generally similar

to previous analyses which did not include MW and sin2 θl
w as constraints in ref. [7] and

to those which included the one-loop SOFTSUSY prediction for MW , sin2 θl
w with enlarged

theoretical errors [9]. This seems in contradiction to the conclusions of Ellis et al [4, 24],

where it is claimed that the electroweak variables prefer light SUSY. Indeed, figure 3

indicates that MW , sin2 θl
w do mildly prefer light SUSY but our results show that this

preference is washed out in the global fits. Our results allow for heavier sparticles than

Ellis et al, mainly because we have chosen to allow more relevant parameters to vary: 8

compared to 2 in their paper (one dimension is fixed by requiring the relic density prediction

to be the central WMAP-constrained value). Their fits are for different discrete values of

fixed tan β, but if it were allowed to vary, we believe that the confidence regions there

would be enlarged. In the present paper, we also obtain additional smearing from allowing

mt, αs, α and mb to vary. Figures 8(a) and 8(b) show the probability distributions for
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Figure 9: Dark matter relic density proba-

bility distribution

Figure 10: Top mass probability distribu-

tion

MW , sin2 θl
w coming from the mSUGRA fits for both signs of µ, although the sign does

not make much difference. We see that the MW prediction coming from the fits is skewed

towards values lower than the central empirical value, corresponding to a preference for

heavy SUSY from the rest of the fits. Figure 2 confirms that heavier SUSY tends to have

lighter values of MW . From figure 3, we see that heavy SUSY tends to be on the upper

1σ empirical limit of sin2 θl
w. Figure 8(b) does show evidence for this skew, which is rather

mild.

The strongest constraint in the fits comes

 0

 0.01
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Figure 11: Probability distribution for tanβ

in mSUGRA

from the dark matter relic density. In fig-

ure 9, we show the probability densities re-

sulting from the fits for the dark matter relic

density. Each curve is normalised slightly dif-

ferently to allow better viewing of the results.

We see that both the µ > 0 and the µ < 0

ΩDMh2 distributions follow the empirical con-

straint closely, except for a slight excess just

lower than the central value.

Another important aspect influencing the

fits is the integrated volume of the probabil-

ity density, which is automatically taken into

account in a Bayesian analysis, as was demon-

strated and pointed out in ref. [9]. The usual

arguments based purely on values of χ2 above

the best-fit value are valid when the probabil-

ity density function is Gaussian in the interesting parameters (which is certainly not the

case here, as even a cursory glance at figure 5 allows). Thus even if, say, the stop co-
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Figure 12: Probability distributions of (a) BR(b → sγ) and (b)BR(Bs → µ+µ−) in mSUGRA.

annihilation region had a much lower χ2 than other regions of the fits,5 the fact that its

volume in 8-dimensional input parameter space is much smaller than the other regions will

automatically disfavour it since its integrated probability will be low.

The LEP2 higgs constraints shown in figure 4, along with the current empirical value

of mt shown in table 1 favours rather heavy mSUGRA. Indeed, figure 10 shows that mt is

skewed to somewhat higher masses than the empirical constraint, illustrating this tension

(again, we have altered the normalisation of the curves slightly for clarity). Inspection of

the α(MZ)MS , αs(MZ)MS , mb(mb) inputs show that they follow their empirical probability

distributions very closely. There is a large volume of parameter space for the A0 dark matter

annihilation region at high tanβ > 10 particularly for µ > 0, as shown in figure 11. High

values of tan β mean that light SUSY is disfavoured by BR[b → sγ] and BR[Bs → µ+µ−]

since the data disfavours SUSY contributions [23], which are approximately proportional to

tan2 β/M4
SUSY and tan6 β/M4

SUSY respectively. The distributions of these two observables

are shown in figure 12. As can be seen from the figure, the sign of the SUSY contribution

to each observable depends upon the sign of µ. The maxima in each figure correspond to

observables being close to their SM limit. BR[b → sγ] prefers µ > 0 mildly, as µ < 0 tends

to predict a BR[b → sγ] larger than the central empirical value.

(g − 2)µ is expected to be the observable that most strongly discriminates between

the two signs of µ. We plot its distribution in each case in figure 13(a). Since µ < 0 has

the wrong sign of δaµ compared to experiment, the probability density bunches around

zero. Clearly heavy SUSY with a less negative SUSY contribution is favoured. However,

we see that the µ > 0 distribution also prefers smaller SUSY contributions than the data

in the global fits. This was initially unexpected, and will lead to µ < 0 mSUGRA being

less ruled out. In order to understand this behaviour better, we re-weight the µ > 0

sample in various ways. δaµ is approximately proportional to tan2 β/M4
SUSY and we need

5In reality, the stop co-annihilation region fits the data rather marginally.
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Figure 13: Probability distributions for δaµ in mSUGRA (a) for flat priors and both signs of µ

and (b) for µ > 0 and various different priors. The key is explained in the text.

large tan β and rather light SUSY in order to get a sizable value in line with the central

experimental value. As explained above, this is somewhat in conflict with LEP2 Higgs

constraints and BR(b → sγ). We re-weight the µ > 0 chains, dividing by a number that

removes the likelihood contribution from the LEP2 Higgs constraint and the BR(b → sγ)

measurement, i.e. LhLBR(b→sγ). The probability distribution of δaµ resulting from this

procedure is marked as the “reduced” curve in figure 13(b). It extends to somewhat higher

and more central values of δaµ, showing that some of the skew in the δaµ distribution

does come from the LEP2 Higgs and BR(b → sγ) measurements. However, the effect is

rather small and the resulting distribution is rather far from the experimental distribution,

indicating a further effect. There could be a significant volume effect if regions of parameter

space that have central values of δaµ have a small volume. This would render our results

sensitive to the prior, since by changing the measure of the input parameters, we can

change the volume measure [8]. In order to investigate the effects of this, we re-weight the

µ > 0 chains by a factor 1/(m0M1/2). Such a re-weighting mimics the effect of using a

logarithmic prior on m0 and M1/2 since

∫

P (m0,M1/2) d ln m0 d ln M1/2 =

∫

P (m0,M1/2)
d ln m0

dm0

d ln M1/2

dM1/2
dm0 dM1/2

=

∫
(

P (m0,M1/2)

m0M1/2

)

dm0 dM1/2. (3.1)

One might consider such a prior on technical naturalness grounds. The “log prior” results

are displayed in figure 13(b). They have a fatter tail out to higher values of δaµ than the flat

prior sample or the “reduced” sample. When we perform the re-weighting in eq. 3.1 as well

as the one to remove BR(b → sγ) and LEP2 Higgs constraints, we obtain the “log prior,

reduced” curve in the figure. This shows a yet fatter tail and is starting to approach the

empirical probability distribution imposed on the fits. Our results are obviously somewhat
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Figure 14: Constraints from global fits without the dark matter constraint with (a) µ > 0 and (b)

µ < 0 mSUGRA marginalised to the m0-M1/2 plane. We have assumed a flat prior. The posterior

probability is indicated by the bar on the right hand side. The inner (outer) contours show the

boundary of a 68% (95%) confidence region.

dependent upon the prior. This is essentially because there is not enough precise data yet

to constrain mSUGRA very strongly. We must bear in mind this dependence upon the

prior, and investigate different priors when we estimate P−/P+ below.

The total normalisation of the µ > 0, µ < 0 sam-
prior flat small log

P−/P+ 0.16 0.12 0.07

Table 4: Ratios of integrated

probability for different signs of µ.

ples is shown in table 4 for various different priors. The

“small” prior is a flat prior with a reduced range com-

pared to the one displayed in table 1. We filter the

chains to only include points with m0 < 2TeV and

|A0| < 2 TeV. The table shows that µ < 0 is somewhat

disfavoured for the smaller ranges and more disfavoured still for the log prior. The result

is somewhat sensitive to the prior, indicating the need for more data. We therefore prefer

to quote a range for P−/P+ = 0.07 − 0.16 depending upon the prior. This range is a focal

result of the present paper.

4. Fits without WMAP3

We now briefly examine the effect of removing the dark matter χ2 penalty from the fits.

We could in principle re-weight the chains in order to do this, but we find that that leads

to statistical fluctuations in the results that are too large. Initial investigations revealed

that the efficiency becomes much higher when we remove the dark matter relic density

contribution to the total χ2. We are able to increase the widths of the proposal distribution

to 197 GeV for m0, 100 GeV for M1/2, 400 GeV for A0, 8.5 for tan β and 1σ for the Standard

Model inputs and still achieve an efficiency of around 35%. This has the consequence that

the chains explore the parameter space much quicker than in the previous section, and so
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Figure 15: Probability distributions in mass of (a) the lightest CP even higgs, (b) gluino, (c) the

left-handed squark and (d) the neutralino. Flat priors have been assumed.

less MCMC steps are needed. We run a further 9×200 000 MCMC steps for each sign of

µ. This time, both signs of µ have excellent convergence statistics, R̂ being different to 1

at the per-mille level only in each case.

We see from figure 14 that removing the dark matter constraint yields a very different

picture for the mSUGRA probability distributions in the m0-M1/2 plane. This confirms our

statement that many of the features seen in the previous section are due precisely to that

constraint. The probability distribution is now much flatter in the input parameter space.

The disallowed region at low m0 and high M1/2 is due to the no-charged LSP constraint.

The disallowed region at low m0 and low M1/2 is due mostly to the combined effect of the

(g − 2)µ, BR(b → sγ) and mh constraints. The disallowed region is significantly larger for

µ < 0 than for µ > 0, due to those three observables. Marginalisations in other mSUGRA

input parameter planes tell a similar story, more featureless than the fits including the dark

matter constraint. As mentioned in the introduction, figure 14 covers the case of R-parity

violating mSUGRA when the R-parity violating couplings are smaller than about 0.1. For
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larger R-parity violating couplings, one would have to include them in the renormalisation

group equations to obtain accurate results.

The more featureless fits have predictable ef-
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Figure 16: Ωh2 distributions without im-

posing the dark matter constraint.

fects on the mass spectrum of the MSSM, as

shown in figure 15. We have fixed the ranges of

the abscissas to be identical to those in figure 7 in

order to facilitate comparison. The lightest CP-

even Higgs probability distribution is broader and

shifted to heavier values, due to the bigger vol-

ume of parameter space allowed at higher m0 and

M1/2 values. Gluino mass distributions no longer

tail off at higher masses: upper bounds would be

mostly determined by the cut-off placed m0 and

M1/2. The gluino mass and neutralino distribu-

tions are also much less peaked than the ones

in figures 7b,d particularly for µ < 0. The flatter

distributions are, of course, an indication that the

data aren’t strongly constraining. Large volumes

at large m0,M1/2 effectively move up the squark masses, as figure 15c illustrates.

The probability distribution of ΩDMh2 is shown in figure 16 for each sign of µ, when

we drop the relic dark matter χ2 contribution. In the figure, we see that huge values can

result: in fact the mean value for the µ > 0 sample tails off at ΩDMh2 ∼ 128, much larger

than the WMAP3 value of 0.1.

This illustrates the fact that regions of parameter
prior flat small log

P−/P+ 0.45 0.43 0.19

Table 5: Ratios of integrated

probability for different signs of µ

with no dark matter constraint.

space which fit the dark matter data in mSUGRA need

some special annihilation mechanism that is not typical

of the whole space. This and similar arguments have led

several authors to consider non-universal models [50, 51],

where the relic density might be less fine-tuned. The dis-

tributions are highly skewed, having tiny tails up to Ωh2 ∼ 1000. The relative normalisation

of µ > 0 to µ < 0 is calculated in the same manner as in the previous section for different

priors, and displayed in table 5. µ < 0 is hardly disfavoured in R-parity violating mSUGRA

(where we can neglect the dark matter constraint), where P−/P+ = 0.19 − 0.45.

5. Conclusions

We have performed global fits to mSUGRA using indirect data and state-of-the-art predic-

tions of the observables. The MCMC technique was successfully employed despite initial

non-convergence of the µ < 0 chains. Bridge sampling was used to normalise two isolated

maxima that had not been traversed by any chain for µ < 0. We found that µ < 0 is

somewhat disfavoured in comparison to µ > 0 but not by huge margins. The rest of the fit

prefers rather heavy SUSY and so the SUSY contribution to (g − 2)µ is small whichever

the sign of µ. µ < 0 is only disfavoured marginally, the ratio of integrated probability
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densities being P−/P+ = 0.07− 0.16 depending upon the prior. We see from figure 16 that

without the dark matter constraint, ΩDMh2 is predicted up to values of around 128. This

corresponds to a χ2
Ω of around 3×108, much larger than is likely from the other observables

such as MW or sin2 θl
w(eff). The fits are therefore completely dominated by the dark matter

relic density constraint and volume effects. Expectations that the SUSY scale will be light

because of a preference from weak observables turn out not to be true in the global fits. If

the dark matter constraint is dropped, as would be the case for R-parity violation, µ < 0 is

hardly disfavoured at all, P−/P+ = 0.19− 0.45. µ < 0 is much less disfavoured than many

seem to assume. Many recent analyses only consider µ > 0 on the grounds that µ < 0 is

strongly disfavoured by (g − 2)µ. We have therefore demonstrated that this is not the case

when one considers the entirety of the data and that µ < 0 should still be considered in

mSUGRA analyses.

It could be argued that the flat measure used here in m0, M1/2, A0 and tan β can

be improved upon. For instance, tan β is really a derived quantity and is related to more

fundamental Higgs potential parameters, which could be considered more natural to have

a flat measure upon. There is also the issue of fine-tuning, recently illuminated in ref. [52]:

we could disfavour regions of parameter space that are highly fine-tuned, for instance [8].

Changes such as these in the prior could potentially change the results of the fits and we

intend to investigate them in a future publication.

Clearly, more data is required to decrease the dependence of results on the prior. The

most helpful data is likely to be that from colliders. The MCMC fitting technique has been

used in an ATLAS study examining how cross-section and kinematic endpoint information

constrains mSUGRA and non-universal models [53]. At this moment, without data from

colliders, we are forced to use indirect constraints for the observables. However, in the

future it will be desirable to predict ΩDMh2 given some SUSY collider observables [54, 55].

If this is in contradiction with the observed value from cosmology, it will point to a wrong

cosmological assumption, which could then be changed. In order to really confirm that dark

matter particles have been produced at colliders, one requires compatibility with direct

dark matter detection data. Of course one would like to drop the mSUGRA assumption

and perform a general SUSY analysis, but for this it is likely that additional data from a

future international linear collider would be required [54, 55]. In any case, the techniques

investigated in this paper should prove useful for the fits.
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the two-loop contributions to the anomalous magnetic moment of the muon, A Pukhov for

help with micrOMEGAs, J Ellis, K Olive, T Plehn, L Roszkowski, J Smillie, G Weiglein and

the Cambridge SUSY working group for helpful comments and M Calleja for invaluable

help with using CAMGRID.

– 18 –



J
H
E
P
1
2
(
2
0
0
6
)
0
6
5

A. Markov chain Monte Carlos

Our Markov chain consists of a list of parameter points (x(t)) and associated likelihood

densities (L(x(t))). Here, t labels the link number in the chain. Given some point at the

end of the Markov chain (x(t)), the Metropolis-Hastings algorithm [56 – 58] requires one to

randomly pick another potential point (x) (typically in the vicinity of x(t)) using a proposal

distribution Q(x;x(t)). There is a large amount of freedom in the choice of the proposal

function Q, and this freedom is usually exploited to improve the efficiency of the sampling

process. In order to ensure that the choice of Q does not bias the final set of samples in

some way, the form of Q is taken into account when deciding whether to accept or reject

the new point. If the ratio ρ defined by

ρ =
L(x)

L(x(t))

Q(x(t);x)

Q(x;x(t))
(A.1)

is greater than one, the new point x is appended to the chain. If ρ is instead less than one,

a decision must be made to determine whether to accept or reject the proposed point x.

The rule is that acceptance of x must occur with probability ρ. If accepted, x is added to

the end of the chain. If not accepted, the point x(t) is copied once more onto the end of the

chain. Whichever point makes it on to the end of the chain is thereafter known as x(t+1).

As a result of following the above steps, the sampling density of points in the chain

becomes proportional to the density of the target distribution (such as the posterior prob-

ability density, or the likelihood when the prior is uniform) as the number of links goes to

infinity, under the circumstances described in ref. [58]. The Metropolis-Hastings MCMC

algorithm is typically much more efficient than a straightforward scan for the dimension-

ality of input parameter space D > 3; the number of required steps scales roughly linearly

with D rather than as a power law. We take the proposal function Q to be a product of

Gaussian distributions along each dimension k = 1, 2, . . . ,D centred on the location of the

current point along that dimension, i.e. x
(t)
k :

Q(x;x(t)) =
D
∏

k=1

1√
2πlk

e−(xk−x
(t)
k )2/2l2k , (A.2)

where lk denotes the width of the distribution along direction k. For the case where

we include the dark matter relic density in the calculation, we choose lm0 = 100 GeV,

lM1/2
= 50 GeV, lA0 = 400 GeV and ltan β = 3. For the Standard Model inputs, we choose

lk = 8σk/20. We discuss why these particular values were chosen in the next section.

In order to start the chain we follow the following procedure, which finds a point

at random in parameter space that is not a terrible fit to the data. We pick some y(0)

at random in the mSUGRA parameter space using a flat distribution for its probability

density function (pdf). The Markov chain for y is evolved through 2000 steps. We then set

x(0) = y(2000), continuing the Markov chain in x and discarding the “burn-in” chain y. A

reasonable-fit point is typically found long before 2000 iterations of the Markov chain. We

must make sure that we perform enough iterations after this point that the chain traverses

the remaining viable parameter space. We will provide a convergence test to this effect.
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A.1 Efficiency

The efficiency of a chain can be defined as “the number of links whose coordinates differ

from those of their predecessor in the chain” divided by “the total number of points in the

chain”. There will always be a tension between efficiency and convergence6 in chains: if

the lk are set to be too small, efficiency will increase but the chain will take too long to

achieve convergence whereas if they are too large, the efficiency will be so small that the

sampling will contain large statistical fluctuations. In practice, the bulk of our posterior

probability density is contained in a very thin hyper-surface in the 8-dimensional input

parameter space [7]. It is thin because ΩDMh2 varies very rapidly over mSUGRA space

compared to the high accuracy of the empirical constraint. With the lk listed above, we

found that efficiencies were at the per-mille level, too small to achieve a statistically stable

result in a reasonable amount of CPU time. To achieve a significantly larger efficiency,

we had to reduce lk to such a level that we lost convergence because the chains had not

traversed the viable parameter space. In order to counter this, we expanded the errors

on ΩDMh2 to ±0.02 while calculating the likelihood density in the chain. This artificially

thickens the “surface” containing the bulk of the posterior probability density, increasing

the efficiency to much more reasonable values of around 5–7%. In order to correct for

this artificial thickening and re-impose the required constraint of eq. 2.7, it was therefore

necessary to re-weight each link of each chain at the end of the sampling. Each link is

re-weighted by the ratio of the proper likelihood density LP to the likelihood density with

inflated errors LI :

LP

LI
= exp

(

−(cΩ − pΩ)2

2σ2
Ω

)

÷ exp

(

−(cΩ − pΩ)2

2 × 0.022

)

(A.3)

in order to impose the correct penalty on the links. We ignore additional constants that

are independent of ΩDMh2 in this expression since the overall normalisation of the likeli-

hood density is here undetermined. The re-weighting procedure necessarily degrades the

statistical spread of the results, however we find that the increase in efficiency more than

compensates for this effect. Below, we re-weight different variables in order to investigate

various features in the results, but the method remains analogous to the one described

here.

A.2 Bridge sampling

One of the numbers we will require from our MCMC samples is the ratio of integrated

posterior probabilities of µ > 0 (P+) and µ < 0 (P−). This ratio will tell us the extent to

which µ < 0 is disfavoured over µ > 0. Assuming a flat prior in the variables of the model,

the posterior probability is equal to the integrated likelihood divided by a factor which does

not depend upon model hypotheses or parameters. Thus P−/P+ =
∫

dxL−(x)/
∫

dxL+(x),

where L+,−(x) is the likelihood density of µ > 0 (< 0) mSUGRA respectively at parameter

point (x). One way to estimate this ratio would be to include the sign of µ as a free

parameter in the Metropolis-Hastings procedure, to be chosen randomly in a proposal

6For a discussion of convergence, see appendix B.
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point. This algorithm leads to large inefficiencies because the µ > 0 and µ < 0 likelihood

surfaces have a limited overlap, meaning that too many proposals for an opposite sign of

µ will be rejected. Also, the procedure would likely provide large statistical fluctuations

for the disfavoured sample, which we expect to be the µ < 0 one. Even though it is

disfavoured, we should like to investigate its properties.

A simple way one might hope to evaluate the ratio P−/P+ is

P−

P+
=

1

E−

[

L+

L−

] ≈ 1

N

N
∑

t=1

L−(x
(t)
i )

L+(x
(t)
i )

, (A.4)

where E− denotes the expectation with respect to the µ < 0 likelihood distribution [12].

N denotes the number of MCMC steps. Unfortunately, a simple importance sampling

estimate of this kind does not work if there are any valid points (L 6= 0) for one sign

of µ that are invalid (L = 0) for the opposite sign of µ. In our case there are plenty of

these dangerous pairings, as sparticle mass or tachyonic bounds move around in parameter

space depending upon the sign of µ. To get around this problem, we use a solution known

as bridge sampling [12] with a “geometric bridge”. This allows us to generate a (biased)

estimator r for the ratio P−/P+ as long as there is some viable region of µ > 0 parameter

space that is also viable for µ < 0. The estimator for the ratio is constructed as follows:

P−

P+
=

E+

[√

L−

L+

]

E−

[√

L+

L−

] ≈ r ≡

∑N
t=1

√

L−(x
(t)
+ )

L+(x
(t)
+ )

∑N
t=1

√

L+(x
(t)
−

)

L−(x
(t)
−

)

, (A.5)

where (x)
(t)
+,− are the parameter points of the
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Figure 17: Convergence statistics for the

MCMCs.

links in the µ > 0 or µ < 0 chains respectively.

Here, we have assumed an equal number of

links in each chain. In summary, to calculate

r, we must run two chains, one for positive

µ and one for negative µ, and for every link,

record the likelihood one would have obtained

for identical input parameters except for the

opposite sign of µ.

B. Convergence and normalisation

In order to evaluate the convergence of the

MCMC chains, we always run 9 independent

chains with different random starting points.

By comparing the similarity of the resulting

sampling densities of input parameters in the

chains, one can construct [59] a measure of convergence R̂. R̂ is an upper bound on the
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Figure 18: The two types of negative µ samples: (a) the “µ < 0, 2 chains” samples (later shown

to be co-annihilation samples), and (b) the “µ < 0, 7 chains” samples (later shown to be non co-

annihilation samples, dominated by resonant Higgs annihilation regions). The posterior probability

is indicated by the bar on the right hand side. The inner (outer) contours show the boundary of a

68% (95%) confidence region.

reduction in variance of parameters that would result from running the chains for an infinite

number of steps. The precise implementation is listed in ref. [7]. Values close to 1 indicate

convergence of the chains.

We run 9 chains of 500 000 points for µ > 0 mSUGRA and for the µ < 0 dark side of

mSUGRA. The µ > 0 curve in figure 17 shows good convergence is achieved by 500 000

MCMC steps. However, the µ < 0 curve shows a problem: convergence is never achieved.

This is a serious difficulty as one could not draw any quantitative statistical inferences from

the non-converged chains. Further inspection of the µ < 0 results shows that two of the

µ < 0 chains are in a completely different part of parameter space than the other seven.

This indicates isolated maxima of likelihood density which the MCMC has not been able

to jump between in the finite number of MCMC steps attempted.7 There is no balance

between the two isolated maxima in the sample. Isolating the two anomalous µ < 0 chains

and calculating R̂ between just them, we obtain the “µ < 0, 2 chains” curve, which closely

approaches 1 by 500 000 MCMC steps. Thus within this isolated maximum, convergence is

achieved. The same can be said of the other “µ < 0, 7 chains” samples: they also converge

amongst themselves. Thus, the shapes of each isolated maximum are well determined, but

the relative normalisation of the two different types of negative µ samples is not.

In order to illustrate the two maxima, we marginalise the two types of negative µ

samples onto the m0 − A0 plane in figures 18(a) and 18(b). The maxima are isolated in

this plane (as well as in some other 2-parameter planes). The two regions are completely

separated. Their shape is primarily determined by regions which efficiently deplete the relic

density of neutralinos which, in mSUGRA, is often higher than the WMAP3 constraint.

We investigate the 2-chain sample in figure 19. In the figure, there are two good-fit regions:

7A proposal distribution with longer tails, such as an n−dimensional Cauchy distribution, would have

more chance of making such a jump.
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where the stau co-annihilates [41] (at moderate values of A0, higher values of mt̃ in the

figure) with the LSP τ̃1χ
0
1 → τγ and where the lightest stop co-annihilates (at A0 <

−3 TeV) with the LSP t̃χ0
1 → tg in the early universe, where mχ0

1
≈ mt̃1

, the lower strip in

the figure. There was no significant stop co-annihilation [38 – 40] region for µ > 0. On the

other hand, figure 18(b) dominantly consists of resonant Higgs annihilation regions [42 –

44], where χ0
1χ

0
1 → h,A0 → bb̄/τ+τ− and the focus point region where the LSP has a

significant higgsino component and χ0
1χ

0
1 → ZZ,WW, tt̄ [45 – 47].

We need a method to determine the
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Figure 19: Probability density in the lightest

stop-lightest neutralino mass plane for the 2-chain

sample. The posterior probability is indicated by

the bar on the right hand side. The inner (outer)

contours show the boundary of a 68% (95%) con-

fidence region.

relative normalisation of the 2-chain co-

annihilation sample and the 7-chain res-

onant higgs annihilation sample. Equiv-

alently we need a method to determine

the ratio of the posterior probability P̃ t̃
−

of the 2-chain co-annihilation sample and

the posterior probability P̃
/̃t
− of the 7-chain

resonant higgs annihilation sample. We

use P̃ to denote the fact that the poste-

rior probabilities are un-normalised. For-

tunately, eq. A.5 provides us with a so-

lution: we first determine the normalisa-

tion of the µ > 0 sample with respect to

each separate µ < 0 sample, i.e. P̃ t̃
−/P+

and P̃
/̃t
−/P+. Since these quantities indi-

vidually have good convergence properties,

their ratio is also well determined:

P̃
/̃t
−

P̃ t̃
−

=
P̃

/̃t
−

P+
÷ P̃ t̃

−

P+
= 0.097 ÷ 0.063 = 1.53.

(B.1)

Normalising the probabilities as aP̃ t̃
− ≡ P t̃

−, bP̃
/̃t
− ≡ P

/̃t
−, we fix a and b by imposing P t̃

− +

P
/̃t
− = 1 and eq. B.1. The relative posterior probabilities ratios are re-calculated whenever

alternative priors are investigated. In section 3 where we present the total µ < 0 sample

results, we present posterior probability densities with the correct normalisation, according

to this prescription. The ratio of the probability of µ < 0 to µ > 0 is then determined

simply by:

P−

P+
=

P t̃
−

P+
+

P
/̃t
−

P+
. (B.2)

It is worth noting that, had we been unlucky, we might have obtained only chains

like those in the 7-chain sample. In that case we would have carried on with the analysis

without realising about the different 2-chain sample, therefore any results achieved would

have been incomplete. An obvious question is: were there any other local maxima that

we have missed by not running enough chains? Unfortunately, any fitting procedure is
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susceptible to this caveat and there is no satisfactory answer. Finding a high but very

narrow global maximum is an unsolved problem in any number of dimensions.
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